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Abstract

Applications of the Monte Carlo method to selected chemical systems are briefly
reviewed. Several models of molecular chains are introduced emphasizing the ran-
dom walk concept and comparison with scaling predictions. The Monte Carlo
approach is illustrated with a system of two interacting, self-assembled monolay-
ers of amphiphile molecules using an off-lattice, good solvent model. Mean size
chain properties and density profiles are discussed for separated and interacting
layers and compared with results from lattice simulations. It is demonstrated that
Monte Carlo simulations compliment both theory and experiment in understanding

complex chemical systems and in predicting their properties.
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1 Introduction

The Monte Carlo (MC) method is a statistical sampling technique [1,2]. This
method was first used in thermonuclear computations [3] and thereafter has found
widespread applications, for example in numerical integration [4-7], image pro-
cessing [8,9], condensed matter physics [10,11], and biological modeling [12,13].



In chemistry alone, MC simulations are today applied to various fields includ-
ing fluid and crystal science and equation of state (EOS) calculations [14-19],
macromolecular and biopolymer chemistry [20-23], sol-gel chemistry [24-28],
aggregation kinetics [29-37], surface and interface science [38—41], and quantum
chemistry [42—44], just to name a few. General accounts that refresh the required
background in statistical mechanics and thermodynamics [45-48] and that supply
strategies in the design of efficient MC routines [15,49, 50] are available. Therein,
one also finds all the details to compare the statistical MC approach with the molec-
ular dynamics (MD) simulation techniques. Herein, we confine ourselves to a short
review of selected MC applications and a MC illustration with a system of two par-
allel supported, interacting monolayers.

In the first part of this work we briefly review exemplary chemical systems ap-
proached by MC techniques. We start with isolated, flexible homopolymers in-
troducing the random walk and the scaling concept, both playing a central role
in theoretical modeling and molecular simulations of surfactant and polymer sys-
tems. Then, we summarize models and results from MC simulations for single
heteropolymers and multimolecular systems consisting of surfactants or polymers
in bulk solution and at interfaces. In the second part we present athermal off-
lattice simulations of two interacting monolayers studying monolayer properties as
a function of layer penetration.

2 Selected Applications

2.1 Homopolymers

A homopolymer is typically represented as a chain of monomers that are undistin-
guishable except by their coordinates. Instead of the term monomer, terms such
as pearl, bead, sphere, segment, hyperatom, residue or structural unit are found in
the literature depending on the considered chain model and application. A particu-
lar chain model is specified by the embedding lattice, the type of the bond between

pairs of consecutive pearls, the defined type of non-bonding pearl-pearl-interaction,



and the chain movement algorithm. Chain molecules have been studied off-lattice,
and on two-dimensional (2D) square and triangular lattices [51-54] and on three-
dimensional (3D) cubic and tetrahedral lattices [55-66]. Within lattice models, two
consecutive pearls in a chain are located on a pair of nearest neighbor (NN) sites
and consequently the bond length is fixed by the distance between two NN-sites.
This distance is addressed as the lattice constant and often used as the unit length.
The number of NN sites for a given lattice site is 4 on the square lattice and 6 on
the triangular and cubic lattice. A much higher number of NN sites and some bond
flexibility offers the bond fluctuation (BF) model [67] that still has the computa-
tional advantages of lattice models. Off-lattice models require numerically more
involved algorithms and are computationally expensive, but free of lattice artifacts.
Of fundamental interest are the polymer conformational properties [68, 69] that
can be calculated by employing MC sampling. The samples are randomly selected
conformations generated as random walks (RW). Formalism and application of the
random walk concept has been treated elsewhere [70] and a guided tour motivates
its implementation for MC sampling [71]. We are primarily interested in chains
with non-intersecting pearls.These are modeled as self-avoiding walks (SAW) and
the chain model is then said to satisfy excluded volume (EV) conditions. Principal
chain properties are defined next, chain models for on-lattice and for off-lattice MC

simulations are considered, and scaling is introduced.

2.1.1 Chain definitions and properties

A particular conformation of a chain with /V,, pearls is given by the set of the pearl

center coordinates {ry,rz,...,rn,}. The conformation is traced by N = N, — 1
bond vectors by, bz, ..., by, of length [;, where
by =rz —ri,bz=r3-rz,...,bn, =rNn, - TN, _;- (1

The sum of these vectors

Nb
Ry, =) b 2)
t=1



is called the end-to-end vector of the conformation. Its end-to-end distance R,

equals the scalar length of Ry, . The square of R, is calculated as
Rl = (zn, — 1) + (v, = 91)* + (2w, — 21)’ 3)

where z1, ¥;, 2; and z Np»> YN,» ZN,, are the coordinates of the two terminal pearls.
Each pearl is described by its diameter d, < [,. At this point we consider uncon-
strained chains with d, = 0 for all pearls. An equilibrium property of a molecular
chains is obtained by building the average from a large number of randomly sel-
elected, individual conformations. In case of R2, this is the mean-square end-to-
end distance [72]

Ny Ny
(RYy=(Rn,-Ry,)= D (bi-b))=Y (bf)+2 > (bi-b)) (@
=1 i=1 0<i<j<N,

Often the dimensionless root-mean-square end-to-end distance, (R2)1/2/1, is used.

Since (bZ) = IZ for any bond vector, we get
(R2)o = Nolj (5)

for the unperturbed state indicated by the subscript 0 next to the right angle. In an
unperturbed chain the bond vectors are completely uncorrelated, i.e. (b; - b;) =
(bs) - (b;) = 0 for i # j. Properties of the unperturbed chain are commonly
employed as reference values with which the properties of perturbed chains are
compared.

The next property to be introduced is the gyration radius of a conformation [72]

RR=(V+1)72 Y b ©6)
1<i<j<Np+1

where b;; is the distance between the centers of pearl  and ;. For the unperturbed

chain at equilibrium conditions we obtain
(Bglo=(Ns+1)* 3 (b @
1<i<j<Np+1

where (b;;)o is the mean distance between the centers of pearl i and j. (b;;)o may
be considered as the mean-square end-to-end distance of a chain with (j — ) bonds.



Thus, with (5) we have (b;;)o = (7 — )! and with (7) we get

(RYo=(No+1)7% > (5-1) )

1<i<j<Ny+1

Replacement of (j — 7) by k leads to

Ny 7 Ny
(RYo=(No+ )23 Y k=N +1)2E>_5G+1/2 9
i=lk=1 =1,

With =%, j = LNy(Ny + 1) and T2, j2 = LNy(N, + 1) (2N, + 1) we finally

obtain

2 _ L aNy(Ny +2)
(Bgdo = Sl —\—7— (10)
With (5) and (10) we get the ratio
<R2>0 Ny +1
=6 11
(B0 "Ny+2 GR
and in the limit N, = oo ,
<Re>0 _
<R§>o =6,N, = © (12)

Equations (1) to (4) and (6) apply in general whereas the remaining equations ap-
ply to unperturbed off-lattice chains in which all bonds are of the same length ;.
Additional properties are defined elsewhere [73].

2.1.2 On-lattice chain models

Starting with the first and second pearl placed onto NN lattice sites r; and ra,
respectively, a chain is grown by consecutively appending new pearls to the cur-
rent chain until a chain with V,, pearls is obtained. During growth, the site for
the new pearl is drawn from a set, Sy, of kyy NN sites depending on the
selected lattice type and on the growth algorithm, where kxn is the coordina-
tion number of the lattice, i. e. the lattice constant. The lattice spacing length
is lp. On a square lattice, for example, the lattice site of the second pearl in

the chain, r = (z2,y2), has the kyny = 4 NN-sites ryn1 = (22 + I, ¥2),



rNNz = (22 = b, y2), INN3 = (22,y2 + ), and rNNg = (22, Y2 — [5). But one
of these sites is already occupied by the first pearl and has to be excluded to satisfy
the EV condition. The growth algorithm determines which of the three remaining
NN sites are allowed to be chosen. Let us assume here that r; = ryni. Then, the
two-choice 90° growth algorithm allows to choose between sites ryns and rNN4,
whereas the three-choice 90° growth algorithm allows to choose from all of the
three remaining NN sites. The two-choice 120° and the five-choice 60° growth
algorithm for the triangular lattice are defined in the same manner [52]. Similar
algorithms have been established for chain growth on three- and four-dimensional
lattices [55,74]. Within any of these growth algorithms NN sites are chosen ran-
domly with equal probability to generate a particular chain conformation. While
the chain is growing there is a good chance that the chosen NN site is already occu-
pied by a previous pearl. In such a case chain growth has to be terminated to guar-
antee unbiased sampling of SAW conformations. The inefficiency in sampling long
chains (N, > 100) is known as the attrition problem [71]. The attrition strength
can be quantified and depends on the selected lattice chain model [52,55,75].
Attrition is avoided by employing biased sampling in which the subset V yn of
vacant NN sites is extracted from Sy . After this preselection a vacant NN site is
randomly and with equal weight chosen from V y . However, completed confor-
mations are now generated with different weights. Rosenbluth and Rosenbluth [51]
have developed a weighting scheme that counts all successfully generated chains
equally as required for statistical properties of equilibrium chains. For the square
lattice, the Rosenbluth-Rosenbluth-weight is calculated as

7. =%
Whrr = T 3% T ]_:_E VNN, (13)

where V v ; is the set of vacant NN sites of the i-th pearl. Wgpg for other lattice
types is calculated accordingly by only adjusting the prefactor. The average values
of the SAW properties (P) with, say, P = R? or Rg are estimated by a ratio of
weighted averages [73]:

Noam Vsam IV
Zi= WeriPi T2 (21 [Vin,l)i P

Nsam Nsam N
Xi=1 " WRR,; L=t (ITizt [Vanil);

(P)~ (14)



where each summation is done over all N, completely generated SAWs. This
kind of MC sampling that includes previewed self-avoidance along with weight
calculation is called inversely restricted sampling (IRS) [73]. The IRS method is
widely used for the generation of small surfactant chains, but still leads to growth
termination for longer chains in which self-trapping, i.e. |V, ;| = 0, occurs for
large <. On average, for example, a three-choice 90° SAW on the square lattice lasts
only 71 steps [76]. That is why there is no best choice of a growth algorithm and
one often needs to design a modified or novel algorithm depending on the problem
at hand.

2.1.3 Off-lattice chain models

The first step towards off-lattice simulation is taken with the BF model. This model
is still based on a square or a cubic lattice, but monomers occupy a 2 x 2-square
ora2 X 2 X 2-cube of lattice points, respectively. Pairs of NN-sites are flexibly
defined by a set of different bond vectors allowing for discrete bond angles and
bond lengths [67].

The freely jointed (FJ) and the freely rotating (FR) chain are off-lattice models
with fixed bond length but with angle flexibility. FJ chains have arbitrary bond
angles between 0° and 180° and arbitrary bond rotation angles between 0° and
360°, whereas in FR chains the bond angle © is fixed [68,72]. The bond rotation
angle ¢; of bond ¢ measures the dihedral angle between two planes defined by bond
pairs (b;_1,b;) and (b;,bj+1), respectively. The FJ chain is exactly mathematically
treatable and was introduced as a polymer chain model by Kuhn [77]. FJ chains
are unperturbed and modeled with equations (1) to (12). FR chains are restricted
by the fixation of the bond angle with consequences to their mean size properties.
Equation (5), for example, has to be modified by additional terms [68] to

1—-zN 1-zV NzN
2\ _ A2 2 — 92 =
(Re>—Nblb+2Nblbz( 1= ) 2lbx<(1_2)2 ]_—;L‘> (15)
where z = cos ©. As NV, — o0, this equation approaches
1
(B = Mt (122 (16)

Further restrictions to the conformational freedom is introduced by various poten-

tial interaction terms that apply between pairs of monomers.
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Interaction between non-bonded monomers is modeled either by non-intersecting
hard pearls with a given radius or by soft pearls for which a potential scheme
of pairwise interaction is applied. Hard pearl chains are also addressed as pearl-
necklace chains. The model of a FR pearl-necklace chain allows the selection of ¢;
freely as long as the pearls do not overlap. Other off-lattice models are based on dy-
namically changing bond lengths. The bead-spring chain that models the bonds as
harmonic oscillators is just one example. Model potentials including bond length
and bond angle vibrations along the molecular backbone have been employed to
model single polyethylene chains [78]. Various algorithms have been established
to grow or to move both on- and off-lattice chains depending on the simulation
goal [22,79].

2.1.4 Scaling concepts

MC simulations are typically applied to coarse-grained models neglecting atom-
istic details. Nevertheless, the observed behavior and critical phenomena of chem-
ical systems are often correctly predicted in terms of simple scaling laws [80, 81].

For polymer systems the asymptotic behavior of a property P is expressed by
P= a,Ng", as N, — oo, 17

where a, is the scaling factor and v is the universal exponent. The latter is the
same for systems associated with the same universality class. For a given class of
systems structural and energetic details are irrelevant for universal scaling. Only
the nonuniversal scale factor has to be adjusted to specific details. For P being
a squared global dimension like the squared end-to-end distance or the squared
radius of gyration of an isolated chain with N, — oo, (17) turns into the scaling
relation [71, 82]

va~059 @ T>Te
P= ()N} with{ vx1/2 : T=Te (18)
vxl/3 ¢ T<Te
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where T is the system temperature and T is the O-temperature defined by [83]

2
lim —<Re>

= const. (19)
Np—oo Np T=Te

©-conditions describe the state at which an isolated polymer chain behaves as a
random coil completeley neglecting any intramolecular interactions. However, T
has also been defined as the point at which the second virial coefficient of a poly-
mer solution vanishes [83]. For the class of good solvents v is above, and for the
class of poor solvents v is below the ©-condition value 1/2. Considering an iso-
lated polymer chain in solution, this can be in the extended coil state (' > Tg),
the random coil state (' = Tg), or the dense globular state (T' < Tp). Mean
size properties of the polymer at the random coil state scale with v = 1/2 just
as the self-intersecting RW properties do; however, the local properties of a ©-
chain differ from the local RW properties [83]. Simulations are said to be athermal
when a SAW model solely with EV interactions (T = oo) is employed. Since
T = oo > Te, athermal simulations always investigate good solvent conditions
and an athermal solvent is said to be a very good solvent. Applications of scaling
relations to viscosity and light scattering behavoir of dilute polymer solutions that
correlate with mean size properties of the molecular chain are discussed in the lit-
erature [77, 84, 85].

2.2 Branched Polymers

A branched polymer is a special case of a tethered polymer chain system in which
one chain end or both ends are attached to a d dimensional surface [86]. A branched
polymer is either a many-arm star polymer (¢ = 0) or acomb polymer(d = 1). Ina
star polymer one end of each chain is attached to a small central core to form a sin-
gle molecule. In a comb polymer one end of each chain is attached to a backbone
chain. The case of a polymer brush (d = 2), in which each chain is grafted to a flat
surface, is considered later. The random walk concept is easily extended to sample
branched chains and MC simulation has been applied to star polymers [87-94] and
to comb polymers [95, 96].

12



A uniform f-arm star polymer has f unbranched arms each having the same num-
ber of pearls, N, y. Note that a linear polymer chain is a 2-arm star molecule.
Exact and MC calculations show that the mean square end-to-end distance of an
arm, (R?(f)), increases with f [87]. Theoretical treatment leads to the relation

(R2(f)y = AN, as N, ;= oo, (20)

where A(f) is an increasing function of f and v(f) = v is independent of f.
Hence, A(f2)/A(f1) > 1 should apply if f, > f; and for the ratio A(4)/A(3) the
value 1.056 was theoretically predicted for the 3D case and the values 1.05 + 0.01
and 1.04 & 0.02 were found by simulation on the simple cubic and the tetrahedral
lattice, respectively, demonstrating that the ratio is universal, i. e. lattice indepen-
dent [87]. Theoretical treatments also predict that the mean square radius of gyra-
tion, (Rg), for a uniform f-star is independent of f and scales with the exponent 2v
of the linear chain as IV, y — oo [87]. Formal replacement of the unbranched arms
of star polymers by branched, tree-like structures leads to dendrimers, which have
been modeled by off-lattice MC simulations to evaluate the scaling behavior [94].
The ultimate properties of dendrimers, however, depend largely on the functional
groups at the chain ends [97].

An example for the MC analysis of comb polymers is the study of the equilibrium
conformations of combs with a flexible backbone and flexible side chains grafted
at regular separations onto the backbone [95]. Using the BF model, the global
and local comb conformational structure and the gyration radius was discussed as
a function of side chain and spacer length and reasonable agreement with scaling
predictions was found.

2.3 Biopolymers

Biopolymers are heteropolymers. In contrast to the study of homopolymers where
MC simulations are used for averaging conformations, biopolymer simulations
including exhaustive and MC methods are often devoted to find specific confor-
mations corresponding to a biologically significant, folded state [98-101], to a
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state preorganized for intrachain loop formation [102, 103] and to states modeling
protein-surface interaction [104, 105]. A simple lattice model has been developed
that builds protein chains simply from either hydrophobic (H) or hydrophilic (P)
monomers representing amino acids [104, 106]. An energy scheme has been de-
fined for the three interactions HH, HP, and PP of non-bonded monomers on
adjacent lattice sites. The goal is to find the native state, which is the state of low-
est energy state, for a given sequence. Using 2D lattice models, the native state
of short sequences can be determined by exhaustive enumeration, whereas MC
simulation is suitable to obtain the native state and closely related states of long
sequences [100, 107]. Related states such as denatured but still compact states are
of interest as the intermediate states in the folding pathway [106]. Moving on to
3D off-lattice simulations, the same protein model of merely two monomer types
is sufficient to follow the gradual compactification of chains depending on their
sequence and on the system temperature [108]. MC methods for the evaluation of
local conformations in polypeptide chains have been integrated into a hierarchic
procedure to predict protein folding (LINUS) [106]. The interested reader is re-
ferred to a recent work that demonstrates the application of lattice MC dynamics to
a protein with 125 monomers and that provides further references to literature on
the very subject [101].

2.4 Polymer Solutions and Mixtures

Scaling relation (18) refers to polymers in infinitely dilute solutions wherein the
chains form isolated, random coils. Increasing the polymer concentration in very
good solvents, the coils eventually start to overlap and the solution arrives at the
semidilute regime. At the transition concentration the coils begin to be densely
packed [109] and the bulk monomer concentration aproaches the monomer con-
centration inside the coils. In semidilute solutions the monomer concentration
becomes independent of NV, and thus thermodynamic properties depend on the
concentration but not on N,. Considering the complete range of monomer concen-
trations, mean size global and local chain properties in good and © solvent have
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thoroughly been studied by MC-simulation on a cubic lattice [82]. Typically, simu-
lation data are discussed by comparison with results from liquid lattice theory. This
theory provides a framework to approximate thermodynamic properties of polymer
solutions employing mean-field methods [110]. Based on the Flory-Huggins (FH)
lattice model, polymer solutions and mixtures have been studied by MC simula-
tions [111-119] as an independent technique to check the validity of mean-field
approximations.

Successful MC-simulations with the FH-model must use the grand-canonical en-
semble [112], for which the chemical potential differences are fixed instead of the
number of molecules in the system. In a binary solution of polymers A and B
in a given solvent, grand-canonical MC-simulations (GCMC) can be performed
by simply transforming A chains into B chains and vice versa. This transforma-
tion move has to be applied in addition to the usual chain moves such as flip,
kink, and crankshaft moves. Sampling of the fluctuations of the order parameter,
((NB—=N4)/(NB+ N4)|), where N4 and Ng are the number of molecules of A
and B, respectively, a collective structure factor, S, is obtained as a function of
the order parameter and the fixed model parameters [112]. This quantity has exper-
imental relevance since it is accessible from small angle light, x-ray, and neutron

scattering.

2.5 Self-Assembled Surfactants

Surfactants in solution are known to form self-assembled structures such as mi-
celles, vesicles and bilayers if the surfactant structure and the solution properties
meet apropriate conditions. Characteristic properties of micelle systems are the mi-
cellar aggregation number and the critical micelle concentration (cmc) [120-123],
for which predictive methods based on quantitative structure-property relation-
ships (QSPR) [124, 125] and on theoretical approaches [126] exist. These ap-
proaches are typically limited in predicting the dynamic behavior of the aggre-
gate size, shape and interface, especially for more complex systems including host

molecules, whereas MC-simulation allow to mimic experiments on such coopera-
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Figure 1: Self-assembly of amphiphiles into a bilayer at an impenetrable surface
(Courtesy of Uwe Reimer).

tive self-assembly processes. With increasing computer resources, studies of self-
assembly will become less restricted allowing for more sophisticated models that
incorporate detailed atomistic geometries and interactions. Current MC simula-
tions, however, rely on simplified models that emphasize universality and capture
the essential physics by coarse-graining.
Micelles. Mean size and shape parameters of micelles, pearl distribution, and clus-
ter size distribution have been studied in lattice MC calculations for short diblock
copolymers, A, B, with m,n < 16, in bulk solution [127-135], on a single sur-
face [136] and between two planar surfaces [137]. Similarly, bulk solutions have
been investigated by including additional solutes to obtain the locus of solubiliza-
tion and the micelle-solvent partition coefficient of the solute [138]. The latter
MC study further shows that solute addition decreases the cmc and increases the
micellar size and that the partition coefficient is independent of the surfactant con-
centration but increases with solute concentration. Off-lattice MC simulations have
been employed to 2D multimicellar systems studying regular and inverted micelles
for both neutral and ionic surfactants [139].

Vesicles and Bilayers. Phase transition behavior and the change of cluster size
distribution as a function of surfactant concentration and system temperature has
been analyzed with cubic lattice simulations in the NV'T ensemble for flexible
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amphiphiles with tail-solvent, head-solvent, and head-head interaction [140]. In
cubic lattice simulations with one- and two-tail amphiphiles self-organization into
vesicles has been observed and vesicle stability, density profiles and aggregation
dynamics were discussed [141]. Cubic lattice simulations with three-segment and
bolaform six-segment flexible amphiphiles in the NVT ensemble with a con-
stant water content of 90% have resulted into the formation of layer structures
at low temperatures by merely applying repulsive NN interactions between alike
monomers [142,143]. A sharp phase transition towards higher temperatures oc-
curs for both types of surfactants indicated by a significant peak in plots of the
heat capacity vs. temperature. Further, mixtures of both surfactant types [143] and
self-assembled layer structures on solid surfaces [144] have also been studied by
MC simulation. Figure 1 illustrates the self-assembly of 3-segment amphiphilic
molecules (one hydophilic head segment, two hydrophobic tails segments) into a
bilayer at an hydrophilic, impenetrable, planar surface based on a cubic lattice MC
simulation in the NV'T ensemble. Empty lattice sites represent the water-like sol-
vent. The ordered crystalline-like bilayer state of Figure 1 undergoes at higher
temperature a transition into a liquid-like, less ordered layer phase of lower den-
sity and with further temperature increase the layer disappears. Phase transitions
have been detected by plotting the heat capacity and the orientation order parame-

ter against the temperature.

2.6 Supported Monolayers

Self-assembly not only occurs in bulk solutions but also at interfaces (Figure 1).
MC simulations are use to study the surface deposition processes [145], adsorption
equilibria [146-151], and the structural properties and the phase behavior of mono-
layers [75,152-173]. The investigated monolayer properties are for example mean
size molecular properties, tilt behavior, ordering parameters, and density profiles.
Long, flexible, grafted chains are modeled as polymer brushes for which consis-
tent scaling relations are obtained using both on- and off-lattice simulations [86].

For high-density surfactant layers the use of off-lattice models has been recom-
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mended since lattice artefacts where found in a systematic study of several lattice
types [174].

In the following illustration of a MC study we consider supported monolayers of
FR-chains grafted onto two planar, parallel surfaces. The two equally dense mono-
layers face each other and will interact depending on the variable distance between
the surfaces. We demonstrate how to construct the model and test its implementa-

tion and we compare simulation results with those obtained with lattice models.

3 Interacting Monolayers

3.1 Off-Lattice Model

System. In our off-lattice model we consider two parallel surfaces Sy and Syy that
are separated by a distance ds. Both surfaces are planar and impenetrable and sup-
port grafting of amphiphilic chain molecules. The system is bounded by a cuboid
of size LyLy,L,, where L, = L, and L, > ds. Periodic boundary conditions ap-
ply in z— and y—direction, whereas the z-direction is confined by Sy at z = 0 and
by Spy at z = ds. The model implementation is based on the cell index method that
divides the cuboid into a regular lattice of cells [15]. This method enables efficient
screening of molecular neighborhoods, but does not imply any discretization to our
model.

Chain model. The off-lattice chains are defined and characterized by (1) to (4 and
(6). We use the FR chain model of the pearl-necklace type in which the IV, pearls
of the chain are treated as hard spheres. The pearls have the same diameter d,
and different centers Ci= (z;, yi, 2;) where 1 < 7 < N,. Consecutive pearls are
connected by a bond of length [y > d,. Pearl-pearl and pearl-surface overlaps are
forbidden to satisfy the EV condition. Each FR chain represents an amphiphilic
molecule of one head pearl (: = 1) and N, — 1 tail pearls (1 < ¢ < N,). A chain
is grafted onto Sy and Syz so that the z-component of C, is either z; = d,/2 and
21 = dg — dp/2, respectively. The number of chains grafted onto S and Sy are
Nen,r and Ny 11, respectively, and in this study N, = Nep 1 = Nep, 11 applies.
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Sampling of conformations. The second pearl is positioned at C, so that the
straight line C;C; is perpendicular to the surface plane and the distance between
C1 and C is |by| = I;. The position for the center of the third pearl is determined
by the bond vector ba, which has to be appended to the current chain at C,. The
compliment of the angle between b, and b, is the bond angle © which is fixed
whereas the bond rotation angle ¢ can freely be chosen from values between 0 and
2m. In other words, a position for the third pearl can be chosen from any point
on the circle obtained by rotating b, around C;C,. Here, we apply uniform dis-
cretization (UD) [175] to the bond rotation angle. Instead of an infinite number of
trial positions we restrict our choice to the set Syyp with Nyp = |Syp| trial posi-
tions that are given by ¢ = 0,27 /Nyp, ..., 27 (Nyp — 1)/Nyp. Trial positions
that would lead to overlap are rejected and the choice of a position is done with
the remaining set of equally probable positions, Vi p, from which one position
is randomly selected as the actual center of the third pearl. We repeat this proce-
dure for every of the following pearls to complete the FR chain. This algorithm
is analogous to the aforementioned IRS algorithm to sample conformations of lat-
tice chains. Instead of the lattice constant there, our algorithm is characterized by
the degree of discretization Nyyp. As Nyp — oo, we approach real off-lattice
simulation. The selection of reasonable values for Nyp has to be guided by the
need for off-lattice reality against the cost of computation time. In analogy to the
Rosenbluth-Rosenbluth-weight in (13), we calculate the weight for the conforma-
tion of a grafted FR chains as

Ny
1-N,
Wup = Nyp ° [[ [Vup,l 1)
=2
During MC simulation, attempts are made to replace the current conformation of
a randomly selected chain by a trial conformations. Assuming the weights of the
current and the trial conformations to be W45 and W3, respectively, then the
trial chain is accepted if either W45 < W(tfg or, in the case that W55 W(tf b
the trial conformation is accepted with probability Pyc. = Wy 5/ W&k,
Mean size properties. Mean size properties of the chains are estimated in analogy
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Figure 2: Mean-square end-to-end distances as a function of surface coverage for

four different chain lengths.

to (14) by a ratio of weighted averages:

Nsam Nsam N,
Ti=1 Wup,iPi  ¥;2™ (1i22 |[Vup,l); Pi

N, N N,
S Wyps  reem (TN, [Vup,l);

where now Ngqmp refers to the number of replicas sampled from all of the gen-

(P) =~

(22)

erated ensemble configurations. More details are provided further below in the
simulation description. For the sake of readability we have included just one indi-
vidual chain into the summation, but to define mean monolayer properties we have
to included all chains grafted onto the same surface.

Layer properties. We are interest in pearl density distributions. We define p.(z)
as the probability to find the free end pearl in a layer between z and z + dz from
surface S1. We calculate replica-averaged probabilities

1 &P N, (2,2 + dz)
Pe(2) = N,
rep .- ch

(23)
1

where N, (2, z + dz) is the number of end pearls in the r-th replica with their
center between the planes at z and z + dz. The number of replicas is Vy.cp.

Density profiles are derived from a sequence of plane densities ® at equidistant =

20



—a— §=0.0825
—v— 0=0.125
—o— 5=0.15625
5 ||—=— o=0.1875

Figure 3: Mean-square end-to-end distances as a function of the surface-surface

distance for four different surface coverages.

values as

Nre(2)

r (2) (24)

P’J

d Z
Nrep r=1 s=1

where N, .(z) is the number of pearls that are cut in the r-th replica by a surface-
parallel plane at z. The circle obtained by such a cut with the s-th pearl has radius
rs(2).

Simulations. Particular simulations were performed within the NV T-ensemble
with a constant number of molecular chains, N = 2N,,, a constant volume,
V = L;L,L., and a constant temperature, ' = oo (athermal simulations). A
particular configuration of the simulated system, in which each chain exhibits a
temporary conformation, is said to be a replica of the ensemble. Each simulation
run began with an ordered, overlap-free start configuration that was equilibrated in
subsequent MC-steps. During a MC-step, a trial was made to regrow each chain
at a different location with a new conformation. The new location was randomly
selected through a head pearl jump over a distance d; < L. /2, allowing for both
the quenched and the -annealed case known for the lattice model [159]. In the
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Figure 4: Mean-square end-to-end distances as a function of the surface-surface
distance for two different chain lengths. The surface coverage is equal to that of

the first curve in Figure 3.

quenched case (d; = 0) the grafting sites are fixed, whereas in the annealed case
(dj > 0) the grafted heads diffuse laterally. First, we applied about 10°> MC-steps
to shake the system, i. e. to generate random chain conformations accepting every
new conformation that obeyed the EV-condition. Then, we equilibrated the system
by accepting weighed trial conformations due to the aforementioned criterium. We
applied at least 2.5 - 10° equilabration MC-steps, although we could show with se-
lected runs that fewer MC-step are sufficient to arrive at the equilibrated state. The
equilibration process was monitored by observing the change of selected mean size
properties. During production the fluctuations in the equilibrated state were sim-
ulated. We saved production replicas at regular intervals. At least 10* MC-steps
were performed for production. Resulting properties were all obtained as averages
over the replicas.

A number of simulations were performed to test the algorithmic behavior and we
continue by reporting the corresponding results. Then, simulations were run to sys-
tematically study the structure of the two monolayers by varing ds. We distinguish

between three different states of monolayer-monolayer interaction. In the separa-
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tion state, dg is greater than the maximum height that can be gained by the end
pearls so that any interaction between chains from opposite layers is excluded. If
dg is small enough for the end pearls tc be able to contact the opposite surface, we
speak of the bridging state. The in-between-state is called the penetration state. We
performed simulations for all three states with a surface coverage, ¢ = N.p /L Ly,
up to 0.25 on each surface. All simulations used the chain parameters d, = [, = 1

and © = 90°. The chain length was varied between 5 and 16 pearls.

3.2 Results and Discussion

Assessing Performance. Before producing modeling results we have to convince
ourselves that the implemented algorithms perform properly. Since conformation
sampling is at the core of our simulations we have in detail verified the chain
growth algorithm. In particular, we have studied its performance in relation to
the UD of the bond rotation angle. This was done for non-grafted chains in an
unbounded system with ds = oco. Over 12 runs we have changed Ny p from 4
and 64. In each run 10° conformations of FR-chains, always with N,, = 16 pearls
were sampled to calculate (R2). We obtained a mean value of 15.003 £ 0.0131 for
(R?), which is in excellent agreement with the calculated value of 15 using (15)
with © = 90°. Further, we would expect a linear correlation between the sampling
time and Ny p and the regression equation

t/ts = (0.1369 % 0.01672) + (0.2186 + 0.00046) Nyyp (25)

with a correlation coefficient of 0.99998, where ¢4 is the sampling time needed
in the run with Nyp = 4, confirms our expectation. The largest absolute devia-
tion between theoretical and simulated (R?) was 0.042 obtained for the run with
Nyp = 4, whereas runs with higher Nyp exhibited smaller deviations but re-
quired more computation time. Including further pre-studies we found Nyp = 8
to be an agreeable compromise and all the following simulations use this setting.
Layer characterization. We found the relations (R?); = (RZ);r and (R?); =

(R;)U to be fulfilled with very good accuracy for various interaction states. These
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Figure 5: Free end-pearl probabilities as a function of the distance from the grafting
surface for three different surface coverages.

equalities come with no surprise since we exclusively studied systems with N4 1 =
Neh,rr and Np 1 = Ny, 11. Therefore, we simplify our following discussion by con-
sidering (RZ) = (R2); and (R2) = (R?);. Figure 2 shows (R?) as a function of
the surface coverage (0 < o < 0.25) for four different chain lengths in the sep-
aration state. For the case N, = 5 we see that (R?) is almost constant whereas
for longer chain length (R2) monotonously increases with increasing surface cov-
erage. We found the same behavior for (R2). Comparable results have been ob-
tained with lattice MC simulations of amphiphile monolayers on planar [165] and
on nanorough [142] surfaces. If we think of the arm number f in star polymers as
the coverage of the surface core, we find the same behavior there: the mean size
properties of arms in star polymers increase with increasing number of arms, i. e.
increasing number of coverage (compare with (20) and discussions in [86]). The
overall picture is that an increase in the density of grafted chains results into more
and more elongated chains with mean size properties that are larger than those for
the coil-like conformation of the isolated chains at low densities. Now we report
results for interacting monolayers. Beginning with very short chains (V, = 5), we

have studied all three interaction states up to a surface coverage of 0.1875. The
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Figure 6: Density profile of a monolayer of 16-mers with o = 0.25.

dependencies of (RZ) on ds are displayed in Figure 3. For the separation state
(ds > 5.5) we observe that (R?) is independent of & in concordance with the re-
sults from Figure 2. For the bridging state ( R2) is again independent of &, but with
a value of (R2) lower than that at the separation state.

Most striking, in the penetration state of Figure 3 (R?) decreases with increasing
surface coverage irrespective of ds. This finding is opposite to the above discussed
overall picture of chain elongation with increasing density. One may explain this
effect by the entropic repulsion of the two opposed monolayers. The probability of
elongated chains descreases as the opposite layer is getting more densely packed.
Further, around ds = 4 a minimum occurs for each curve in Figure 3 and (R2)
increases as the bridging state is approached for a given surface coverage. At the
beginning of the bridging state the two layers are completely merged and the pearl
density has doubled. One may speculate that elongated chains are getting more
likely at this state of much higher density since they would allow closer packing,

for example, into configurations in which opposite chains could be arranged by
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Figure 7: Density profile of two interacting (ds = 9) monolayers of 12-mers with
o = 0.0625.

interdigitation.

The results for longer chains (N, = 8 and n,=12) for ¢ = 0.0625 are shown in
Figure 4. Clearly, ( R?) is decreasing with increasing pearl density (i. e. decreasing
ds) just as we have found for N, = 5. However, for the longer chains no (R?)
minimum occurs in the penetration state. Comparison with Figure 3 shows that the
minimum is only weakly pronounced for o = 0.0625 and a further discussion of
the minimum has to wait for simulation results of penetrating layers with higher
surface coverage not available in the current work.

Figure 5 depicts the distribution of the free end pearls for three different surface
coverages of chains with NV, = 16. Broad distribution of the end pearls similar
to results from lattice polymer brush simulations (/V, = 30) [159] are found. Our
results also agree with the lattice simulation results in that, as = — 0, the end pearl
densities stay nonzero contradicting self-consistent field predictions [159].

Figure 6 illustrates a typical density profile of grafted chains (V, = 16, o = 0.25).
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Figure 8: Density profile of two interacting (ds = 7) monolayers of 12-mers with
o = 0.0625.

Similar density profiles have been found with lattice simulations and self-consistent
field calculations [158,159,165,173]. A density maximum occurs near the grafting
surface and the density then falls off smoothly to zero. Here, the special geometry
at the grafting site and the hard sphere geometry leads to pronounced density os-
cillations, which, less pronounced, have already been observed in density profiles
obtained with the BF model. The oscillations level off after a few bond lengths
away from the surface. We also obtained density profiles for interacting mono-
layers (N, = 12,0 = 0.0625). Near the separation state two distinct, oppositely
faced profiles, each very similar to the profile of Figure 6, appear. Further inter-
penetration leads to profiles similar to the one shown in Figure 7 (ds = 9). Density
maxima obscured by density oscillations can be seen on both sides near the graft-
ing surface. A local density minimum is observed halfway between both surfaces.
Our profiles for ds > 7 look similar to the weak overlap regime profiles that were

found in MC simulations of telechelic chains grafted as loops onto the same and
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as bridges onto both surfaces [176]. For the strong overlap regime (ds = 7) we
obtain the profile depicted in Figure 8. Therein, a local density maximum is found
haliway between both surfaces.

4 Conclusions

A brief review was given illustrating that MC simulations are applicable to various
chemical model systems. MC results are useful in comparison with both theoreti-
cal predictions and experimental measurement. MC simulations allow the study of
both global and local properties of complex systems.

The Monte Carlo approach was applied to a system of two oppositely faced, inter-
acting, self-assembled monolayers of amphiphile molecules using an off-lattice,
good solvent model. Monolayers were modeled as grafted FR pearl-necklace
chains with bond angle © = 90°. Separated off-lattice monolayers show a be-
havior very similar to the one for lattice monolayers. In separated monolayers an
increase in density results into increasing mean size properties. However, the oppo-
site effect was observed while the density was increased by pressing two supported
monolayers against each other.

The current off-lattice model was athermal. Future simulations will include a po-
tential scheme for pearl-pearl and pearl-surface interactions to study the phase be-
havior and the forces between functionalized surfaces in contact.
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