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Summary

The basic formulas required to perform a simple linear regression (SLR)
analysis are reviewed. A sample data set with calculation results is
provided for the purpose of testing and illustration. We demonstrate
how an SLR model can be derived in different ways by Python and
R programming. The provided code snippets are supposed to serve
as hands-on starting points while evaluating relationships between two
variables.
This document has been made available at
www.axeleratio.com/math/comp/linreg/linregways.pdf and a brief in-
troduction was posted to the axeleratio blog.
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Introduction

Simple linear regression (SLR) is a method to test and establish linear
relationships between two variables. Given a combination of an indepen-
dent variable x and a dependent variable y realized by a certain number
of sample-value pairs (xi, yi), SLR treatment results in an empirical relation
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of the form
y′ = a+ bx (1)

In this equation, a and b are regression coefficients and y′ is the re-
sponse variable. Assuming a and b being derived with n sample-value
pairs (1 ≤ i ≤ n), then y′ values are either fitted values y′i (not necessarily
equal to yi) for the xi’s of the sample set or estimated values y′n+k for new
xn+k (k ≥ 1).

Equation (1) can be considered as a data fitting result, representing the
sample data. Depending on the quality and goodness of fit, the equation
may turn out as a linear model for the association of the two variables.
Such models are useful in predicting dependent quantities or in evaluating
the linearity or non-linearity for a two-variable relationship.

Our goal here is to compare ways of deriving such relations or models by
programming with the Python and R languages. Therefore, we summarize
the formulas required to calculate regression coefficients in the next section.
Also, the calculation of “description-of-fit” values is shown. Further sections
provide a data set for testing and explore the use of NumPy, SciPy and
R to actually compute SLR values.

Formula background

Introductions to linear regression analysis can be found in many textbooks
and online resources. The description and notations, which we use in the
following with only slight variations, are based on the work by Edwards
[7], Moore [8] and Woodward [12]. In all three texts the method of least
squares is applied to to explain data fitting. The intent of our formula
overview herein was made to capture the different terms in use and associate
them with a procedure for their calculation—without a detailed discussion
elaborating statistical interpretation.

SLR computation expects associated sample values for the independent and
dependent variable as input. Let’s assume we have a sample set of n data
pairs with the values for the variables x and y structured as arrays such that
the pair associations is preserved by index i:

x = [x1, . . . , xi, . . . , xn]; y = [y1, . . . , yi, . . . , yn] (2)
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Based on these two arrays, we now write down the basic formulas needed
to perform SLR analysis. Summation is always over n. For convenience, we
drop index subscripts and summation bounds from the formulas.

Means and sums derived therewith. The mean values are:

x̄ =
Σx

n
, ȳ =

Σy

n
(3)

We further need the sums of squares of the values about their means:

Sxx = Σ(x− x̄)2, Syy = Σ(y − ȳ)2 (4)

and the sum of products of the deviations of the x and y values
from the means:

Sxy = Σ(x− x̄)(y − ȳ) (5)

Regression coefficients. Regression coefficient b, also named slope or
gradient, is

b =
Sxy

Sxx

=
Σxy − (Σx)(Σy)/n

Σx2 − (Σx)2/n
(6)

and regression coefficient a, also known as intercept, is

a = ȳ − bx̄ (7)

ANOVA sums of squares. The ANalysis Of VAriance (ANOVA) gives a
basis for quantifying the variation about the regression and for performing
tests of significance. The total sum of squared deviations of the y
values from ȳ, SStot = Syy, can be partitioned into the sum of squares
for regression (also named sum of squares due to regression),

SSreg = Σ(y′ − ȳ)2 = S2
xy/Sxx, (8)

and the residual sum of squares (also named sum of squares about
regression),

SSres = Σ(y − y′)2 = Syy − S2
xy/Sxx; (9)

such that SStot = SSreg +SSres. In the case of a perfect linear relationship
between y and x with all points falling exactly on a straight line (y = y′),
we will have SSres = 0.
ANOVA mean squares. A mean square (MS) equals the sum of squares
divided by the associated degree of freedom (DF):

MStot =
SStot

n− 1
, MSreg = SSreg, MSres =

SSres

n− 2
(10)
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Note that generally MStot 6= MSreg +MSres.
Correlation coefficient. The correlation coefficient between y and x is
defined as

r =
Sxy

√

SxxSyy

. (11)

For r-squared we have:

r2 =
S2
xy

SxxSyy

=
SSreg

SStot

= 1− SSres

SStot

. (12)

What is called adjusted r-squared is calculated as

r2adj = 1− MSres

MStot

. (13)

Standard errors. The residual standard error, also named the stan-
dard error about regression, is

σres =
√

MSres =

√

SSres

n− 2
(14)

and σ2
res is the variance about regression. The standard error of a is

sa = σres

√

Σx2

nSxx

. (15)

The standard error of b is

sb =
σres√
Sxx

. (16)

Test-of-significance parameters. The t-test parameter is defined as

t =
b

√

MSres/Sxx

. (17)

The F value is

F =
MSreg

MSres

. (18)

Descriptive statistics of residuals (dsr). The residual values, ei =
yi − y′i, show us how much the fitted y-values deviate from the observed
ones. After sorting the residuals such that the values are in ascending order,
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the lowest value, dsrMin, and the largest value, dsrMax, are easily identi-
fied. Further descriptors include the 25th percentile (1st quartile), 50th
percentile (2nd quartile, better known as median) and 75th percentile
(3rd quartile). We use the notations dsr25P, dsr50P and dsr75P for these
descriptors that give us the residual value markers below which 25%, 50%
and 75% of the residual value population, respectively, is found. Note that

dsrMin ≤ dsr25P ≤ dsr50P ≤ dsr75P ≤ dsrMax (19)

Calculation Example

In this section we present sample data and calculated SLR values for com-
parison with output from program runs.

Table 1 contains the sample data. The values are from Woodward’s

Table 1: Two physical properties of rubber samples: hardness values (xi’s)
and abrasion loss values (yi’s).

i xi yi i xi yi i xi yi

1 45 372 11 64 164 21 71 219

2 55 206 12 68 113 22 80 186

3 61 175 13 79 82 23 82 155

4 66 154 14 81 32 24 89 114

5 71 136 15 56 228 25 51 341

6 71 112 16 68 196 26 59 340

7 81 55 17 75 128 27 65 283

8 86 45 18 83 97 28 74 267

9 53 221 19 88 64 29 81 215

10 60 166 20 59 249 30 86 148

Table 2: Calculated mean values, sums, regression and correlation coeffi-
cients, errors, and F- and t-statistic values

x̄ = 70.27, ȳ = 175.4, Sxx = 4, 300, Syy = 225, 011, Sxy = −22, 946

a = 550.4151, b = −5.3366, sa = 65.7867, sb = 0.9229

r = −0.7377, r2 = 0.5442, radj = 0.7266, r2adj = 0.5279

σres = 60.5205, F = 33.43, t = −5.78
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Table 3: Analysis of Variance (ANOVA)

Source of Variation Sum of Squares DF Mean Square

Due to regression SSreg = 122, 455 1 MSreg = 122, 455
About regression SSres = 102, 556 28 MSres = 3, 663

Total SStot = 225, 011 29 MStot = 7, 759

Table 4: Response values (y − i′) and residuals (ei = yi − y′i)

i y′i ei i y′i ei i y′i ei

1 310.27 61.73 11 208.88 -44.88 21 171.52 47.48

2 256.90 -50.90 12 187.53 -74.53 22 123.49 62.51

3 224.89 -49.89 13 128.83 -46.83 23 112.82 42.18

4 198.20 -44.20 14 118.15 -86.15 24 75.46 38.54

5 171.52 -35.52 15 251.57 -23.57 25 278.25 62.75

6 171.52 -59.52 16 187.53 8.47 26 235.56 104.44

7 118.15 -63.15 17 150.17 -22.17 27 203.54 79.46

8 91.47 -46.47 18 107.48 -10.48 28 155.51 111.49

9 267.58 -46.58 19 80.80 -16.80 29 118.15 96.85

10 230.22 -64.22 20 235.56 13.44 30 91.47 56.53

introduction to “Linear Relationships Between Two Variables” [12]: For
thirty rubber specimens the hardness in I.R.H. (Shore) units and the abra-
sion loss in g./h.p.-hour are given. The table lists values for each specimen
(numbered by i), with hardness being the independent variable x and abra-
sion loss the dependent variable y.

As pointed out by Woodward, measurement of hardness is quickly and sim-
ple, while the determination of abrasion loss is more elaborate. Therefore,
a method that allows a sufficiently accurate prediction of abrasion loss from
hardness would be of considerable advantage.

A CSV file with the data pairs of Table 1 (xi values separated from yi
values by semicolon) is available at:
www.axeleratio.com/math/comp/linreg/csv/woodward71.csv.

Table 2 lists values calculated based on the formulas given in the previ-
ous section. sums and regression and correlation coefficients.
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The ANOVA values are given with Table 3. The estimates (response values)
and residuals are given in Table 4. The minimum and maximum residuals
are in bold type. The values for the descriptive statistics of the residuals
are: dsrMin = −86.15, dsr25P = −46.77, dsr50P = −19.49, dsr75P = 54.27,
dsrMax = 111.49.

SLR with NumPy

SLR can be implemented with Python from scratch [3]. Such an approach
requires repetitive writing of loops over arrays. NumPy comes with a meta-
language for array arithmetic, so we can trim our manual job of algorithmic
coding. NumPy is a Python package for scientific computing including a
powerful array object [4].

We begin with importing the libraries (packages) we need and then loading
the x and y values from a CSV file:

import math, csv

import numpy as np

fcsv = open(csvFile)

xlst, ylst = [], []

try:

rows = csv.reader(fcsv, delimiter=’;’)

# Get first row with variable (column) names

headrow = next(rows, None)

# Continue with rows having semicolon-separated numeric entries

for row in rows:

xlst.append(float(row[0]))

ylst.append(float(row[1]))

finally:

fcsv.close()

x = np.array(xlst)

y = np.array(ylst)

For example, we would assign csvFile with the path to file woodward71.csv.
Note that in the last two lines the lists are placed in NumPy array containers.
Now, we are ready to compute the SLR values. This is done by “translating”
the formulas given above into Python/NumPy code:
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n = np.size(x) # should be equal to np.size(y)

xmean, ymean = np.mean(x), np.mean(y)

xd, yd = x - xmean, y - ymean

Sxx, Syy, Sxy = np.sum(xd*xd), np.sum(yd*yd), np.sum(xd*yd)

b = Sxy/Sxx

a = ymean - b * xmean

SSreg = Sxy*Sxy/Sxx

SSres = Syy - SSreg

SStot = Syy # = SSreg + SSres

MStot = SStot/float(n-1)

MSreg = SSreg

MSres = SSres/float(n-2)

r = Sxy/(math.sqrt(Sxx*Syy))

radj2 = 1 - MSres/MStot

sres = math.sqrt(MSres)

sumx2 = np.sum(x*x)

sa = sres * math.sqrt(sumx2/(float(n)*Sxx))

sb = sres/math.sqrt(Sxx)

t = b/math.sqrt(MSres/Sxx)

F = b*b*Sxx/MSres

Finally, we calculate the residuals and derive the dsr values by using NumPy’s
median and percentile methods:

residuals = []

i = 0

while i < n:

yfitted = a + b*xlst[i]

residuals.append(ylst[i]-yfitted)

i += 1

dsrMin = min(residuals)

dsr25P = np.percentile(np_res,25)

dsr50P = np.median(res)

dsr75P = np.percentile(np_res,75)

dsrMax = max(residuals)

That’s it; although, typically, we would insert validation code (for example,
before division by Sxx) to control program flow and smoothly handle extreme
values and unexpected situations. We skipped such code here to focus on
the main SLR procedure. With xi’s and yi’s loaded from woodward71.csv,
a print-out of the assigned variables should display values that match those
given in Tables 2 to 4.
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SLR with SciPy

The SciPy package complements NumPy [5]. It contains a least-square re-
gression function for two sets of measurements [6]. If you are mainly in-
terested in the regression coefficients and the correlation coefficient, using
this function makes it simple to get these values. Before executing the func-
tion, the x and y values need to be put into NumPy arrays—as before. In
addition, SciPy’s stats module has to be made available:

from scipy import stats

Then, it takes only one further line to execute the SLR calculation:

b, a, r, p_value, std_err = stats.linregress(x,y)

Therewith, we get the gradient (b), the slope (a) and the correlation coeffi-
cient (r). Unfortunately, there exists some confusion about what we exactly
get with p value and std err [1, 10]. Unless you are sure about their SciPy
definition or ready to delve deeper into this issue, we suggest to calculate
standard errors as shown above under NumPy only. p-Value and error cal-
culations are also easily obtained via the lm() function in R—demonstrated
in the next section.

SLR with lm() in R

R provides a convenient data structure called data frame [11]. It allows the
storage of two-dimensional tables of numeric and other data. For example,
the data of Table 1 can be framed as sampledata:

sampledata = data.frame(

x = c(45, 55, 61, 66, 71, 71, 81, 86, 53, 60,

64, 68, 79, 81, 56, 68, 75, 83, 88, 59,

71, 80, 82, 89, 51, 59, 65, 74, 81, 86),

y = c(372, 206, 175, 154, 136, 112, 55, 45, 221, 166,

164, 113, 82, 32, 228, 196, 128, 97, 64, 249,

219, 186, 155, 114, 341, 340, 283, 267, 215, 148)

)

Instead of manually typing values, we typically want to import them from
a file. Having the values ready in a CSV file (compare with data loading
in NumPy), such that each row (line) contains an xi and a yi value sepa-
rated by a semicolon, we use the following command to create data frame
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sampledata:

sampledata = read.csv("datafile.csv",header=TRUE, sep=";")

With the specification header=TRUE, a header row with the variable
names is expected: “x; y” for x and y. If we use the setting header=FALSE,
the variable names would be V1 and V2. This is important to remember,
since we need to reference correct variable names to continue with the re-
gression.

The function lm() fits a linear model to data, which have to be supplied
in the data frame or another compatible format [2]. In the following, lm()
is applied to sampledata and the fitted model is saved as an object named
linearmodel.

linearmodel = lm(y ~ x, data = sampledata)

summary(linearmodel)

The summary function creates the following output:

Call:

lm(formula = y ~ x, data = sampledata)

Residuals:

Min 1Q Median 3Q Max

-86.15 -46.77 -19.49 54.27 111.49

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 550.4151 65.7867 8.367 4.22e-09 ***

x -5.3366 0.9229 -5.782 3.29e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 60.52 on 28 degrees of freedom

Multiple R-squared: 0.5442, Adjusted R-squared: 0.5279

F-statistic: 33.43 on 1 and 28 DF, p-value: 3.294e-06

The output repeats the call of the lm() function followed by SLR results
explained in the following.
Residuals. Min, 1Q, Median, 3Q and Max correspond to dsrMin, dsr25P,
dsr50P, dsr75P and dsrMax, respectively.
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Coefficients. The “Estimate” column gives the regression coefficients b (In-
tercept) and a (x row). The standard erros sb and sa are listed in the “Std.
Error” column. Each value in column “t values” is derived by the division of
the “Estimate” value by the “Std. Error” value. These values in combina-
tion with the p values in the “Pr(> |t|)” column are useful in the judgement
whether we found a linear relationship or not. The close-to-zero values in
the “Pr(> |t|)”indicate that it is unlikely the found relationship is merely
due to chance. The three asterisks at the end of each coefficient row visually
support the significance of the relation ship: highly significant p-values and
the rejection of the null hypothesis of a simply-by-chance-relationship). The
meaning of the asterisks codes are explained in the “Signif. codes” line,
which shows the associated statistical significance level.
Residual Standard Error. Residual standard error is σres of formula 14
Multiple R-squared. Multiple R-squared is r2 of formula 12.
Adjusted R-squared. Adjusted R-squared is r2adj of formula 13.
F-statistic. The “F-statistic” value is calculated based on formula 18.

You can individually access the values displayed in the summary. The fol-
lowing example lines show how to get a, b, sa and sb via the model summary
ms by using the function coef() (an alias of coefficients() [9]):

ms = summary(linearmodel)

a = coef(ms)["(Intercept)","Estimate"]

b = coef(ms)["x","Estimate"]

sa = coef(ms)["(Intercept","Std. Error"]

sb = coef(ms)["x","Std. Error"]

The residual standard error, σres, and the squared correlation coefficients,
r2 and r2adj , are extracted from ms with these lines:

sres = ms$sigma

r2 = ms$r.squared

radj2 = ms$adj.r.squared

Conclusion

Linear regression computation includes multiple operations with array data.
The NumPy package provides efficient tools for easily implementing data
structures and methods to perform SLR analysis. The linregress() func-
tion in the stats module of the SciPy packages offers a convenient way
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to directly derive the regression coefficients and the correlation coefficient.
Since the assignment of the p-value and standard error values is not as
transparent as we would like, we prefer to calculate statistical descriptors
by using NumPy functionality only. If you prefer a consistent presentation
of the regression model along with statistcal data, you can achieve this in a
few lines with R, using data.frame and lm(). R’s versatile summary makes
it easy to display an SLR summary report as well as extracting result values
individually.

If your visual or statistical data analysis suggests a non-linear relation-
ship between the variables of interest, you may want to consider applying
curvilinear regression analysis as well.
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