
How to perform curvilinear regression

analysis with R

Axel Drefahl | axeleratio@gmail.com | axeleratio.com

Last updated: March 10, 2019

Summary

Curvilinear regression (CLR) analysis can easily be performed in the R
software environment. Here, we demonstrate how to derive a parabolic
relationship, a special case of a curvilinear relationship, with a few lines
of R programming. Fitting a parabolic model is done in four basic
steps, which consist in (1) entering the data or importing the data via
CSV file into a data frame structure, (2) calculating and adding the
desired powers of the values for the independent variable(s) to the data
frame, (3) using function lm() to derive the model and (4) reporting
results and extracting result values for further analysis.
This document has been made available at
www.axeleratio.com/math/comp/linreg/curvilinreg.pdf

Copyright © 2019 by author.
This work is licensed under the Creative Commons Attribution Inter-
national Licence (CC BY).
http://creativecommons.org/licence/by/4.0/

Keywords: Curvilinear regression, polynomial regression, R, free soft-

ware, programming, statistical computing.

Introduction

Computationally, curvilinear regression (CLR) analysis is not very dif-
ferent from multiple linear regression (MLR) analysis. To fit a curvilin-
ear relationship (polynomial relationship), we follow exactly the same pro-
cedure as fitting a multiple regression [4]. Let’s assume we have a dataset of

1

http://www.axeleratio.com/axel
mailto:axeleratio@gmail.com
http://www.axeleratio.com
http://www.axeleratio.com/math/comp/linreg/curvilinreg.pdf
http://creativecommons.org/licence/by/4.0/

observed values for an independent variable x and a dependent variable y, for
which we found the relationship not adequately represented by a model re-
sulting from simple linear regression (SLR). Then, we may consider curvilin-
ear regression by including powers of x. Treating powers x, x2, . . . , xp like the
independent variables in MLR (compare with equation 1 in “MLR with R”),
we get:

y′ = a+

p∑

j=1

bjx
j (1)

In this equation, a and the bj ’s are regression coefficients and y′ is the re-
sponse variable. This model approach can be extended to the dependence
of y on various independent variables—each one included up to a certain
power. Here, we consider the special case of parabolic regression (p = 2).
The derivation of a parabolic model (also named quadratic model) with
R is demonstrated by using a published set of sample data. With the R code
of this example at hand, R programming to model relationships with multi-
ple variables at various power levels will be computationally straightforward,
while interpretation of the obtained results may become more complex.

Hands-on data

We use the data of Example 8.3 in [4] that studies monthly usage of coke
as a function of the air/steam ratio for a water-gas plant. The independent
variable x is the air/steam ratio (1,000 m3 air/ton steam) and the dependent
variable y is coke efficiency (coke used per 1,000 m3 of (H2+CO) produced).
The values are listed in Table 1 in the Appendix and are also available with
a CSV file:
www.axeleratio.com/math/comp/linreg/csv/woodward83.csv.

The scatter diagram (y vs. x, Fig. 8.6 in [4]) suggests that there is a rela-
tionship, but not a linear one. For the parabolic model, Woodward gives the
following calculated values: a = 280.9, b1 = −323.54, b2 = 112.25 sb1 = 81.2
and sb2 = 22.3. We have calculated the response values and residuals, which
are given in columns 5 and 6, respectively, in Table 1. The boldface residual
entries are the residual minimum of -20.447 and the residual maximum of
30.194.

2

http://axeleratio.blogspot.com/2019/02/simple-linear-regression-with-python.html
http://www.axeleratio.com/math/comp/linreg/multilinreg.pdf
http://www.axeleratio.com/math/comp/linreg/csv/woodward83.csv

CLR with lm() in R

We use the variable dataset to reference the data frame storing the x and
y columns of Table 1:

> x <- c(2.11, 2.29, 2.32, 2.31, 2.25, 2.22, 2.20, 2.41, 2.19,

+ 2.06, 1.99, 1.62, 1.59, 1.70, 1.76, 1.33, 1.23, 1.40,

+ 1.38, 1.96, 1.47, 1.42, 1.33, 1.65, 1.26, 1.61, 1.74)

> y <- c(120, 122, 128, 124, 118, 114, 119, 149, 141,

+ 86, 78, 31, 51, 72, 51, 53, 50, 34,

+ 68, 70, 49, 50, 66, 46, 40, 51, 51)

> dataset <- data.frame(x, y)

The same is achieved by importing the values from CSV file woodward83.csv:

> fcsv <-

+ "http://www.axeleratio.com/math/comp/linreg/csv/woodward83.csv"

> dataset <- read.csv(fcsv, header=TRUE, sep=";")

The month column in this file containd index i and can be ignored int further
treatment. New columns can easily be added to an existing data frame [2].
To derive a parabolic model, we need to add the squared x values:

> dataset$xsq <- dataset$x ^ 2

The function lm() carries out the curvilinear modeling:

> curvilm <- lm(y ∼ x + xsq, data = dataset)

The model results are displayed by calling the summary() function:

> summary(curvilm)

We get:

Call:

lm(formula = y ∼ x + xsq, data = dataset)

Residuals:

Min 1Q Median 3Q Max

-20.457 -6.827 -3.318 2.905 30.177

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 281.23 71.65 3.925 0.000637 ***

3

x -323.80 81.60 -3.968 0.000571 ***

xsq 112.32 22.39 5.016 3.99e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 12.27 on 24 degrees of freedom

Multiple R-squared: 0.8962, Adjusted R-squared: 0.8876

F-statistic: 103.6 on 2 and 24 DF, p-value: 1.558e-12

The output format and the displayed descriptors are the same as described
for SLR. The only difference is that the “Coefficients” section includes an
additional rows to account for x2. You can individually access these values
via the model summary, for which we use the variable ms. Then, for example,
b2 and sb2 are obtained as follows:

> ms = summary(curvilm)

> b2 = coef(ms)["xsq","Estimate"]

> sb2 = coef(ms)["xsq","Std. Error"]

To apply the derived model to a new value v = 1.72 for x, we all predict()
function after putting the new data into data frame newdata:

> v <- 1.72

> vsq <- v^2

> newdata <- data.frame(x=c(v), xsq=c(vsq))

> predict(curvilm,newdata)

1

56.59288

The estimated y value matches our control calculations (when rounded to
the fourth decimal):

1: 281.2303− 323.7978 · 1.72− 112.3225 · 1.72 · 1.72 = 56.59297.

Note that the numeric precision of the y values in the dataset is 3 or lower.

Conclusion & Outlook

The purpose here was to demonstrate how a parabolic model can be derived
with R. A dataset and a corresponding CSV file for testing was provided.
No attempt was made to interpret CLR results or to investigate modeling
alternatives. You may also want to look at other examples demonstrating
curvilinear regression in R [1, 3].

4

http://www.axeleratio.com/math/comp/linreg/linregways.pdf

About the author

Axel Drefahl has designed scientific software for chemical property prediction
at the Technical University of Munich, Germany, and Stanford University,
California. At the Freiberg University of Mining and Technology he devel-
oped Monte-Carlo-simulation algorithms to virtually study interactions of
functionalized nanoparticles. Axel initiated the CurlySMILES Project for
the encoding of complex, annotated molecular structures, polymer systems
and nanoarchitectures. His experience and interests include pattern recog-
nition, nanoinformatics, sustainable chemistry and the history (and future)
of science. Off-line, Axel enjoys the outdoors, nature studies and photogra-
phy. Back online, he shares his findings and impressions on TrailingAhead,
Latintos, Explore Reno-Tahoe and other sites.

Literature & Links

[1] Michy Alice. Fitting polynomial regression in r. https://

datascienceplus.com/fitting-polynomial-regression-r/. Ac-
cessed: 2019-03-10.

[2] Sharon Machlis at ComputerWorld. 4 data wrangling tasks in R for
advanced beginners: Learn how to add columns, get summaries, sort
your results and reshape your data. https://www.computerworld.com/
article/2486425/. Accessed: 2019-03-06.

[3] David Lillis. R is not so hard! a tutorial, part 4: Fitting a qudratic
model. https://www.theanalysisfactor.com/r-tutorial-4/. Ac-
cessed: 2019-03-10.

[4] R. H. Woodward. Multiple and curvilinear regression. In O. L. Davies
and P. L. Goldsmith, editors, Statistical Methods in Research and Pro-

duction, chapter 8, pages 237–303. Longman, London and New York, 4
edition, 1984.

5

http://www.axeleratio.com/csm/proj/main.htm
http://trailingahead.blogspot.com/
http://golatintos.blogspot.com/
http://explort.blogspot.com/
https://datascienceplus.com/fitting-polynomial-regression-r/
https://datascienceplus.com/fitting-polynomial-regression-r/
https://www.computerworld.com/article/2486425/
https://www.computerworld.com/article/2486425/
https://www.theanalysisfactor.com/r-tutorial-4/

Appendix

The dataset of observed values used in this document are from Table 8.3 in
[4]. These values are given in Table 1 along with response values and resid-
uals calculated with equation 1 using the regression coefficients obtained by
R computation. The residuals are calculated as ei = yi − y′i. The minimum
and maximum residuals appear in boldface type.

Table 1: Dataset with observed and fitted values, and resid-
uals (see section “Hands-on data”).

i xi x2i yi y′i ei

1 2.11 4.4521 120 98.072 21.928

2 2.29 5.2441 122 128.745 -6.745

3 2.32 5.3824 128 134.565 -6.565

4 2.31 5.3361 124 132.603 -8.603

5 2.25 5.0625 118 121.300 -3.300

6 2.22 4.9284 114 115.952 -1.952

7 2.20 4.8400 119 112.499 6.501

8 2.41 5.8081 149 153.238 -4.238

9 2.19 4.7961 141 110.806 30.194

10 2.06 4.2436 86 90.843 -4.843

11 1.99 3.9601 78 81.666 -3.666

12 1.62 2.6244 31 51.447 -20.447

13 1.59 2.5281 51 50.344 0.656

14 1.70 2.8900 72 55.375 16.625

15 1.76 3.0976 51 59.264 -8.264

16 1.33 1.7689 53 49.259 3.741

17 1.23 1.5129 50 52.885 -2.885

18 1.40 1.9600 34 48.057 -14.057

19 1.38 1.9044 68 48.288 19.712

20 1.96 3.8416 70 78.071 -8.071

21 1.47 2.1609 49 47.956 1.044

22 1.42 2.0164 50 47.916 2.084

23 1.33 1.7689 66 49.259 16.741

24 1.65 2.7225 46 52.751 -6.751

25 1.26 1.5876 40 51.561 -11.561

26 1.61 2.5921 51 51.057 -0.057

27 1.74 3.0276 51 57.878 -6.878

6

7

	Introduction
	Hands-on data
	CLR with lm() in R
	Conclusion & Outlook
	About the author
	Appendix

