Extraction and Application of Environmentally Relevant Chemical Information from the ThermoML Archive

Ekstrakcja i Użycie chemicznych Informacji odnoszacych się do Środowiska z Archiwum ThermoML

Axel Drefahl

axeleratio@yahoo.com

Presentation at the ENVIROINFO 2007 in Warsaw, Poland, on September 12, 2007

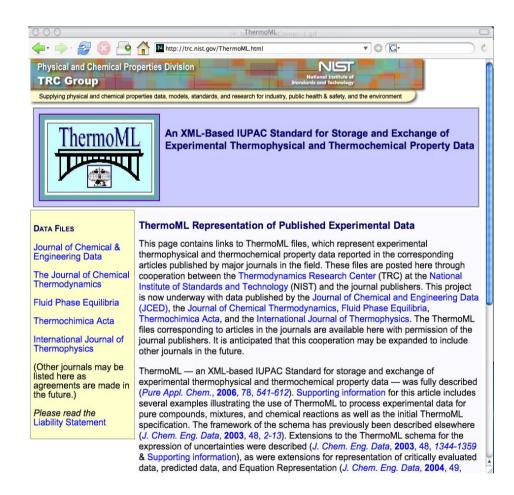
Overview

- ThermoML quick tour
- Chemical identification
- Chemical Property Viewer (CPV)
- ThermoML compounds and properties of environmental interest
- Property estimation methods: Modeling with ThermoML data
- Future developments and applications

ThermoML is an XML application

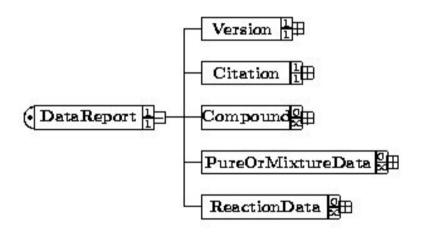
XML = eXtensible Markup Language

ThermoML = Thermodynamic Markup Language to capture and exchange thermodynamic data


Other XML applications of interest in science and environmental chemistry:

- . <u>MathML</u> to represent and apply equations, functions, etc.
- . CML to encode molecular structure
- . <u>CDX</u> for Central Data Exchange of environmental information at US-EPA

To explore XML applications and initiatives go to: http://xml.coverpages.org/xmlApplications.html


ThermoML Archive Portal

http://trc.nist.gov/ThermoML.html

- General Information
- Links to publications about ThermoML
- Links to ThermoML files with chemical property data of articles from five journals
- Schema: trc.nist.gov/ThermoML.xsd

ThermoML root and first layer nodes

- Exactly one <Version>
 and one <Citation>
 subtree
- None to many

 Compound>,

 PureOrMixtureData>
 and

 ReactionData>
 subtrees

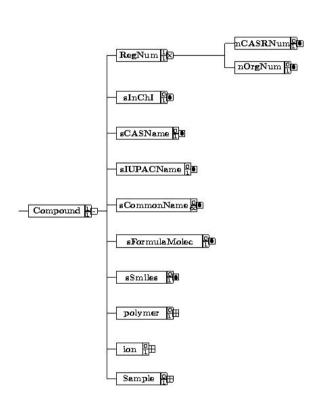
Programming approaches using the Document Object Model (DOM)

Off-line scripting

Python, XML access via
xml.dom.minidom module

Python scripts implemented for

- Inspection of ThermoML files
- Extraction of data
- XML-to-XML conversions (chemical dictionary generation)


Web design

JavaScript for browser-side tasks,
DOM functions slow for huge XML
files

PHP for server-side tasks including dictionary browsing and generation of result pages

(XMLReader extension for parsing huge XML documents)

Compound Block for chemical identification

- Cross-referencing: <nOrgNum>, <nCASRNum>
- Name(s): one or more <sCommonName>
- Chemical composition:
 <sFormulaMolec>
- Molecular structure:
 <sInChl>, <sSmiles>
- Others: <polymer>,<ion>, <Sample>

Inspection of currently available ThermoML files shows:

- Cross-referencing within a file mostly done through <nCASRNum>
- Typical nodes used for compound identification: <sCommonName> and <sFormulaMolec>
- Structural information not (yet) available from within ThermoML files

Scope of ThermoML Archive

Total number of ThermoML Files:

1,568 (Feb'07)

1,737 (July'07)

1,016 (with pure compound data for over 40 different properties)

Counting property data nodes:

17,226 (total, Feb'07)

7,764 (for pure compounds, Feb'07)

8,277 (for pure compounds, July'07)

Counting compounds (July'07):

1,113 (organics by name)

58 (inorganics by name)

1,154 (distinct CASRNs)

716 (distinct molecular formulae)

Most frequent properties:

Vapor or sublimation pressure

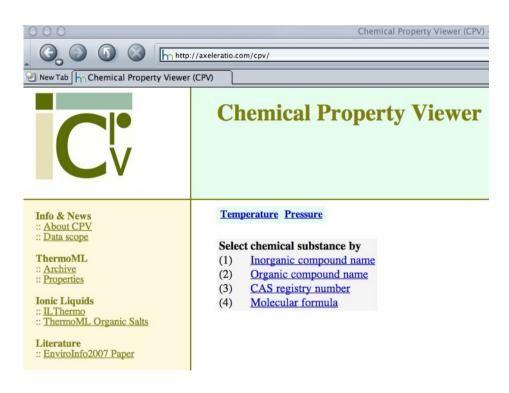
Mass density

Refractive index (Na-D-line)

Viscosity

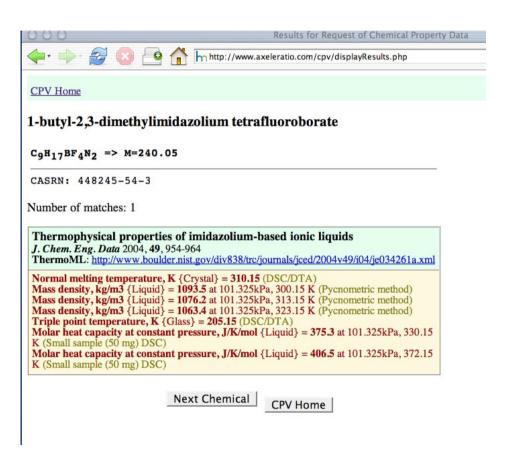
Molar heat capacity at constant *P*

Conversion of ThermoML files into customized XML files


The ThemoML Archive is organized by article.
Location of chemicals and properties requires looping over all archive file.

Mark-up provision for numerical accuracy, chemical purity, and exact physical state gives strength to ThermoML, but such info not needed for every task.

- Generation of chemical dictionaries for lookup by name, formula, and CASRN
- Generation of lean versions of ThermoML Archive to efficiently retrieve chemical systems (pure, binary, ternary) and properties of interest


Chemical Property Viewer (CPV)

www.axeleratio.com/cpv

- Define temperature and pressure range
- Select by name for inorganic (non-carbon) compound
- Select by name for organic (carboncontaining) compound
- Select by CASRN
- Select by molecular formula

Display of CPV results

- 1 Match, referring to 1 article
- Link to ThermoML file
- Property data given line-by-line
- Some properties at different temperatures

CPV results with user-defined temperature range

- Default setting: data at any temperature (T) and pressure (P)
- User option: to define lower and upper limits for T and P

CPV results including multiple matches

- 3 Matches
- Narrow temperature range
- Data comparison: mass density occurs in 2 matches at similar temperatures

Water H₂O 7732-18-5

Current number of matches: 61 articles

Almost all articles report pure water properties in context with properties of aqueous solutions and (water + chemical) systems.

Typical (and exotic) T, P Ranges

Temperature range: 273 to 400 K

(hexagonal ice: 0.5 to 38 K)

Pressure range: 100 to 3,500,00 kPa

Many properties at 101,325 kPa

- Mass density
- Vapor pressure
- Viscosity
- Surface tension
- Molar heat capacity
- Thermal conductivity

(Water + Chemical) Systems for over 400 chemicals

- Mass density, viscosity, surface tension
- Molar enthalpy of solution
- Activity and diffusion coefficients
- Henry's Law constants

A list of all chemicals and available properties with ThermoML links can be found at

www.axeleratio.com/EnviroInfo2007/AquBinSys.html

Properties of Ionic Liquids (ILs)

IUPAC Ionic Liquids

Database (ILThermo)

provides forms to look up data and

literature. ilthermo.boulder.nist.

gov/ILThermo/mainmenu.uix

ILThermo supports search by

- Literature
- Property
- Ions
- Ionic Liquids

but no XML access.

ThermoML Archive

currently contains over 50 files with data on organic salts including pure ILs and mixtures. www.axeleratio.com/
EnviroInfo2007/OrganicSalts.html

Most frequent properties:

- triple, melting, boiling temp.
- vapor or sublimation pressure (!)
- density, viscosity, surf. tension
- molar heat capacity
- thermal, electrical conductivity

Design and Testing of Chemical Property Estimation Models

Broad range (*T*, *P*, and molecular-structure-wise) of ThermoML data available for

- theoretical modeling (e.g., corresponding states principle using $T_{\rm c}$, $P_{\rm c}$, $V_{\rm c}$)
- (semi)empirical modeling (e.g., QPPR, QSPR, GCM, ANN, molecular similarity)
- molecular descriptor calculation
- generation of training and test sets

ThermoML provides a clear, well-defined interface to select and evaluate data within the request context.

Example: Polarizability

www.axeleratio.com/EnviroInfo2007/CompareAlphas.pdf

- Experimental data from ThermoML Archive: Mass Density, Refractive Index (Na-D line) at T/K = 293.2, 298.2
- Atom Additivity (AA)

 approach
 (Bosque and Sales:

J. Chem. Inf. Comput. Sci. **2003**, 42, 1154-1163)

Experimental polarizability:

$$\alpha_{\rm LL} = 0.3964 \frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2} \frac{M}{\rho}$$

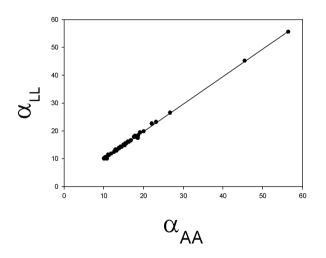
based on Lorentz — Lorenz (LL) equation.

Estimated polarizability:

$$\alpha_{\mathrm{AA}} = 0.32 + \Sigma c_{\mathrm{A}} N_{\mathrm{A}}$$

where

 $c_A = \text{contribution for atom A}$


 $N_{\rm A} = {\rm number\, of\, atoms\, A\, per\, molecule}$

Results: **Polarizability**

www.axeleratio.com/EnviroInfo2007/CompareAlphas.pdf

- 64 compounds with data that were not part of the original work by Bosque and Sales could be extracted from ThermML Archive
- Excellent correlation between exp. and est. polarizabilities at 298.2K:
 R = 0.9996

Comparison of exp. and calc. polarizabilities

BioaccuML? EcotoxML? FirehazML? NanomatML?

The success of ThermoML encourages XML presentation of other chemical information.

Are publishers of environmental journals/literature ready?

What is the current status?

Of interest:

Parr (2007): Open Sourcing Ecological Data.

BioScience, 57 (No. 4), pp. 309-310.

Swan(2007): Open Access and the Progress in Science.

Am. Sci. 95 (No.3), pp. 197-199.

Customization of Chemical Property Viewer

- Chemical identification based on molecular structure and substructure
- Data interpolation at given T and P
- Interface for binary and ternary chemical systems
- Data fitting
- Design of property estimation methods (correlations, molecular similarity, ...)

Conclusions

- ThermoML supports open access screening, filtering, and comparing of chemical information.
- The Chemical Property Viewer (CPV) provides quick "first-glance" access to chemical property data and associated files/publications.
- Chemical data critical to environmental modeling is abstracted with ThermoML and extractable as context demands.

Future Developments

may include

- Integration of ThermoML data with environmental modeling tools, chemical life-cycle assessment, and alternative materials (re)search.
- Probing ThermoML property + reactivity data in predictive models for biodegradation, synergistic or antagonistic environmental behavior and solar detoxification.

Ongoing ThermoML activities:

- Updating the Chemical Property Viewer with data from the latest publications
- Adding functionality to the Property
 Viewer in concert with advancing research goals

This slide show can be revisited at

www.axeleratio.com/EnviroInfo2007/slides.pdf